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Objective

Bedside monitors in Intensive Care Units (ICUs)
frequently sound incorrectly, slowing response

times and desensitising nurses to alarms, causing
true alarms to be missed [1]. We compare sliding
window predictors with recurrent predictors to
classify patient state-of-health s from ICU

multivariate time series x at every timestep t, i.e.
P (st|xt−l:t+r), where l is the amount of past
context and r is the amount of future context.

1. Data

ChannelsHeart Rate, Systolic and Diastolic Arterial
Blood Pressure, Systolic Intracranial Pressure

AnnotationsStable, Blood Samples, Endotracheal Suc-
tion, Damped Traces, X Factor (abnormal)

Dataset 27 patients admitted to the Neuro ICU at the
Southern General Hospital in Glasgow [4]

Max Sequence LengthsRanging from 1,149 timesteps
(19mins) to 153,678 timesteps (42 hours) depend-
ing on the event

2. Methodology

Sparse Input SequencesOnly a small proportion of
timesteps contained annotations (a class imbal-
ance), so we used the annotated events as input
sequences. We included context information of
length equal to the event on either side, under
the assumption that this would contain stable
periods.

Model InputsWe supplied only the blood pressure
channels to the blood sample and damped trace
predictors, and all channels in other cases.

3. Hyperparameter Selection

Sliding Window Hyperparameters
•Number of hidden layers in {1, 2, 3}
•Number of hidden units h (4 ≤ h ≤ 2048)
•Length of the segments 4 ≤ l ≤ 49 and 0 ≤ r ≤ 10
•Learning rate µ (0.001 ≤ µ ≤ 0.1)

Recurrent Hyperparameters
•Number of hidden cells c (8 ≤ c ≤ 128)
•Number of hidden units h (4 ≤ h ≤ 2048)
•Learning rate µ (0.001 ≤ µ ≤ 0.1)

We performed Bayesian optimisation by fitting a Gaus-
sian Process prior over our observations of perfor-
mance and generating new hyperparameters using
an acquisition function which computes the expected
improvement [3]. This improved the selection time
considerably over grid search.

* work completed whilst at University of Edinburgh.

4. Sliding Window (MLP)

We extracted the following features

•Least squared fits of a line of segments of the traces
•Exponentially weighted moving average
•Pulse pressure
•The first order differences of the sequences

using a feature extraction layer with appropriate initial
weights, which were fine-tuned through backpropaga-
tion. To operate on segments of the input sequence,
connections were removed as necessary. This fed into
a number of ReLU layers and finally, a sigmoid output
layer trained to output P (st|xt−l:t+r).
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Figure 1: An example MLP with feature extraction layers. x is
the input layer and f is a linear layer which computes the first
order differences and mean of the input. The weights for fd1 and
fd2 are (+1,−1) and the weights for fm1 are (1

3,
1
3,

1
3).

5. Recurrent (RNN)

To investigate whether a recurrent predictor could
learn long term correlations in the input, we directly
supplied the input channels instead of extracting fea-
tures, except for the Damped Trace event, where we
replaced the systolic blood pressure with the pulse
pressure.

•GRU hidden cells with a single sigmoid output unit
at each timestep

•Truncated backpropagation [6] over 256 timesteps
to make computation tractable

We found with the MLP experiments that including
futre context r of up to 10 seconds improved classifica-
tion. We therefore delayed the targets by 10 seconds
during training.
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Figure 2: The RNN used in our experiments. xt is the vital signs
data, yt is P (st|x) and hidden cells are GRUs.

6. Results

We performed nested cross-validation [2] (3 folds in
an outer loop and leave-one-patient-out in an inner
loop) and concatenated the results.

AUC BS DT SC X

DSLDS 0.94 0.78 0.64 0.56
MLP 0.94 0.78 0.63 0.54
RNN 0.97 0.71 0.65 0.58
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7. Empirical Observations

Empirically, we made the following observations,
which could warrant further study (see [5] sections 4
and 5 for more thorough discussion).
Adapting to baseline physiologySliding window pre-

dictors would incorrectly classify low pulse pres-
sures as damped traces, whereas recurrent predic-
tors would wait for a reduction in pulse pressure
before making a classification.

Classifying long-term eventsEvents are often obscured
by other pathology. RNNs can maintain state
through these disturbances, whereas sliding win-
dow predictors will only classify the beginning
and end. However, RNN hidden state can decay
too slowly if event ends are not well delineated.

Noisy input sequencesThe RNN was better at han-
dling very volatile input because the hidden state
causes the predictions to effectively be smoothed,
in comparison to the MLP which produces very
volatile predictions in response to this volatility.

Computational complexityRNNs are much more com-
putationally expensive to train because the se-
quences must be zero padded to equal length.

References

[1] M-C. Chambrin. Alarms in the intensive care unit: how can the number of false alarms be reduced?. Critical Care 5.4(1), 1. 2001
[2] S. Varma and R. Simon. Bias in Error Estimation when using Cross-Validation for Model Selection. BMC Bioinformatics, 7(1), 1. 2006.
[3] J. Snoek, H. Larochelle, and R. P. Adams. Practical Bayesian Optimization of Machine Learning Algorithms. Advances in Neural Information Processing Systems. 2012.
[4] P. Lal, C. K. I. Williams, K. Georgatzis, P. Hawthorne, C. McMonagle, I. Piper, and M. Shaw. Detecting Artifactual Events in Vital Signs Monitoring Data. Technical Report, University

of Edinburgh and Glasgow. 2015.
[5] A. McCarthy. An Evaluation of Sliding Window and Recurrent Predictors for the Classification of ICU Time Series. MSc dissertation. University of Edinburgh. 2016.
[6] A. Graves. Generating sequences with recurrent neural networks. arXiv:1308.0850. 2013.


